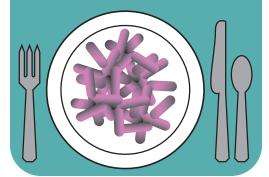
DRINKING WATER PURIFICATION CONVENTIONAL TREATMENT WATER SOURCE COAGULATION RAPID MIXING Aluminum or iron salts added to the water remove negative charges from suspended particles, allowing them to stick together. FLOCCULATION SLOW STIRRING **Gentle stirring of water increases** MANY PATHOGENS **ARE ENTRAPPED BY** collisions between microflocs, MACROFLOCS [1]. forming visible floc particles SEDIMENTATION Water is held still in settling basin, floc particles sink to the bottom, and clarified water is drawn from top.

FILTRATION

RAPID


SAND FILTER (RSF)

- Filtering bed is 50-75 cm deep, using sand and/or anthracite grains 0.5-1 mm in diameter [2].
- Water is forced through filter using gravity or pressure. Bacteria, parasites, & particles get stuck to or between grains.
- Can achieve flow rates up to 20 meters per hour, but requires daily backwashing to unclog [3]
- Most widely used filtration system in developed countries.

SLOW SAND FILTER (SSF)

- A layer of safe bacteria and microbes called the "schmutzdecke" eat the bad bacteria & all other pathogens.
- Flow rate 0.1-0.3 m/h [4]
- Requires more land, used more in Europe

MEMBRANE FILTERS

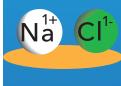
MICROFILTRATION 0.1 - 1 μm Removes Bacteria, Parasites, Floc Low Pressure System

ULTRAFILTRATION 0.01 - 0.1 µm

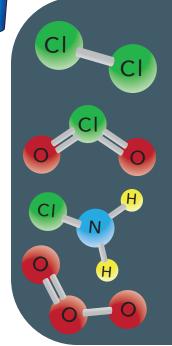
Removes Viruses, Proteins, some man-made compounds like pesticides & endocrine disruptors [5]
Low Pressure System

NANOFILTRATION 1 - 10 nm


- Removes molecules and some ions such as calcium & magnesium [5]
 High Pressure System
- High Pressure System


REVERSE OSMOSIS 0.1 - 1 nm

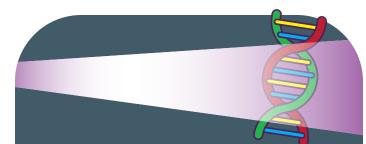
- Removes all dissolved salts & ions
- High Pressure System



DISINFECTION

The application of an oxidizing agent or UV light inactivates or kills any remaining pathogens. The water is safe to drink.

Oxidizing Agents



Chlorine is the most common disinfectant. Chlorination forms chlorite ions & hypochlorous acid. The ions damage cell walls, and HOCI passes through them and cripples internal functions [6]. Residual chlorine protects water from recontamination during distribution. Some by-products (DBPs) are hazardous.

Chlorine Dioxide works like chlorine & is just as effective. It produces no DBPs, but its application is more difficult [2].

Chloramines are weaker disinfectants but are sometimes added as a residual to guard against recontamination.

ULTRAVIOLET LIGHT

UV light is effective against all pathogens. Wavelengths around 254 nm are best at inactivating DNA [2]. UV light produces no DBPs but does not leave a

Ozone is even more powerful disinfectant than chlorine. Ozonation is expensive and leaves no residual in the water.

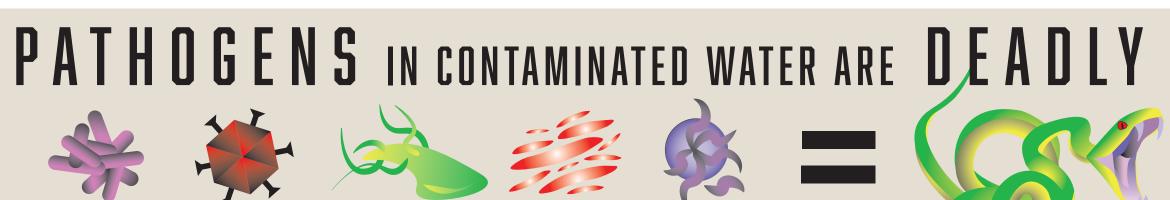
NEW RESEARCH

UV LEDS (LIGHT-EMITTING DIODES)

- Wavelength can be selected to disinfect individual pathogens [7].
 - Could be installed in distribution systems in the future [7]
 - Too expensive right now, but costs are likely to decline [8]
 - More efficient, longer lifespans, no mercury, no DBPs [8]

Advanced Oxidation Processes

- Solar disinfection (SODIS) is used in developing countries & requires at least 6 hours of direct sunlight exposure.
- Scientists have accelerated & enhanced SODIS with AOPs using photo-Fenton & peroxymonosulfate. [9]
- Titania photocatalysts have been effective in field tests [10].


BIOLOGICAL TREATMENT TECHNOLOGIES

- Safe bacteria neutralize contaminants with oxidation.
- These systems can degrade endocrine-disruptors [11].
- Systems that have been researched for drinking water include membrane bioreactors and biologically activated carbon [11].

Developing Countries

Around 500,000 people die of diarrheal, waterborne illness every year [12].

LEGIONELLA

GIARDIA

ENTERIC VIRUS

E. COLI

POINT-OF-USE SOLUTIONS

Household **biosand filtration** is a cheap and effective point-of-use (POU) system. Sand and microbes filter out contaminants. TivaWater biosand filters have provided clean water to over 300,000 people in developing countries [13].

Access to chlorine is limited [S]. **Chlorine** can be produced **locally** through the electrolysis of saltwater, and WATA[™] devices can generate 1 liter of solution per hour, which can disinfect 4000 liters of water; WATA[™] devices have provided clean water to thousands. [14]

Membrane filtration devices can remove pathogens & turbidity from water using gravity or hand-pumps. LifeStraw[®] & WATEROAM[™] are some providers of these filters. Membrane filtration will likely become the main method of purification in the future [15].

Sources

- 1. Shrestha, R. (2019, May 21). Sedimentation (centralised). SSWM.
- https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/sedimentation-(centralised) 2. Gerba, C. (2019). Drinking Water Treatment. Environmental and Pollution Science, 435–454.
- 3. WHO Seminar Pack for Drinking-Water Quality Water. World Health Organization. https://www.who.int/water_sanitation_health/dwq/S12.pdf.
- 4. Spuhler, D. (2019, May 21). Slow Sand Filtration. SSWM. https://sswm.info/sswm-university-course/module-2-centralised-and-decentralised-systems-water-and-sanitation-2/slow-sand-filtration 5. Madsen, H. T. (2014). Membrane Filtration in Water Treatment – Removal of Micropollutants. Chemistry of Advanced Environmental Purification Processes of Water, 199–248.
- 6. Pain, A. (2019, May 22). Chlorination (centralised). SSWM. https://sswm.info/sswm-university-course/module-2-centralised-and-decentralised-systems-water-and-sanitation-2/chlorination-(centralised). 7. Linden, K. (2019). Thinking Outside the Treatment Plant: UV for Water Distribution System Disinfection. Accounts of Chemical Research, 52(5), 1226–1233.
- 8. Pichel, N. (2019). The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere, 218, 1014–1030.
- 9. Diez, P. (2020). Enhancing solar disinfection with the photo-Fenton or the Fe2+/PMS-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. Water Research, 186.
- 10. Porley, V. (2020). Field testing of low-cost titania-based photocatalysts for enhanced solar disinfection (SODIS) in rural India. Environmental Science: Water Research & Technology, 6(3), 809–816.
- 11. Hasan, H. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33.
- 12. World Health Organization. Drinking-Water. (2019, June 14). https://www.who.int/news-room/fact-sheets/detail/drinking-water
- 13. Our Filter. TivaWater. (2016). https://www.tivawater.com/our-filter.html.
- 14. Wata[™]. (2020, September 2). Applications terrain Wata[™]. Wata. https://watatechnology.com/fr/applications-terrain/.
- 15. Zinn, C. (2018). How are water treatment technologies used in developing countries and which are the most effective? Journal of Public Health and Emergency, 2(25).

Ryan Warrick Univ. of Tenn. Knoxville November 2020