Genomic Epidemiology

Linking Precision Health with Populations
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> How genetics and epidemiology evolved in parallel
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19t century

Genetics Epidemiology

Evolutionary tree Cholera in London
Charles Darwin, 1837 John Snow, 1854
Origin of Species, 1859 M Gwinn 2023



Early 20t century

Genetics Epidemiology
A a + _
A + d b
a Q — C d
Punnett square, 1905 Fisher’s exact test, 1922

Rediscovery of Mendel’s experiments 2>  Foundations of genetics and statistics

M Gwinn 2023



Mid 20t century

Genetics

DNA structure
Watson and Crick, 1953

Molecular biology

Epidemiology

TasLe IV.—Proportion of Smokers and Non-smokers in Lung-

carcinoma Patients and in Control Patients with Diseases Other
Than Cancer

Disease Group No. of No.of |  Probability

Non-smokers Smokers Test

‘Ni:.mt i i (649) 2 (0-329) 647 P( t method)

ung-carcinoma patients 3% exac

ng P ‘ / -

Control patients with diseases

other than cancer (649) 21 (82%) | 622
l:el. c-arcm: W (60) 19 31°7%) 4 | 2~ 57. 1

un moma patients 77 - n -

' 0-01 < P<002

Control patients with disease : ]
other than cancer (60) ; 32(53-3%) 28

JL
<o ( v&

Smoking and carcinoma of the lung
Doll and Hill, 1950

Risk factor epidemiology
M Gwinn 2023



Late 20t century
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High-throughput genotyping
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Polymerase chain reaction (PCR) I Zopde ———————
Mullis and Smith, 1983 o o e
So after the 3 steps in the PCR where the strand splits into two and 3rd cycle
primers are added. This process allows it to repgat s0 many times 2°4= 16 copies
e:(?::?:rt‘xf‘l't‘y setting it in motion of a chain reaction, which is the interest
High-performance computing =
1.000.000.000 -
po-e
Exponential performance 100.000.000 |
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https://www.top500.org/

Early 215t century

x23andMe .
My Health Action Plan

‘S'ﬁ u;‘éag

The selfie
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The “quantified self”

Vision

Taste/ Olfaction

Haptic

g
M
Somatic (eg temperature, humidity)
W j Movement
2

. L X . ! 3

—

Figure 1: Applications and wearable devices used for ‘Quantified-Self’
adapted from Kim and Fesenmaier (2015)
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Outline

> How genetics and epidemiology evolved in parallel

> Why group-level data are required to assess individual risk
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Why do we need population-level data to assess individual risk?

Epidemiology:

The determinants and distribution of health and disease in defined populations.

Medicine:
The cause and occurrence of disease in an individual.

Why can’t we just use more—and more precise—individual measurements?

M Gwinn 2023



The causes of common
diseases are too
complex and dynamic to
predict by using data
from a single individual.

KEGG PATHWAY: map00010 (genome.jp)
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https://www.genome.jp/entry/map00010

Causal

processes |
are also |
subject to |
random \
variation.

Symposium 1: Overnutrition:
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Kopelman P. 2009


https://www.researchgate.net/publication/40441706_Symposium_1_Overnutrition_Consequences_and_solutions_Foresight_Report_The_obesity_challenge_ahead

Epidemiology:

The determinants and distribution of health and disease in defined populations.

associations proportions demographics
rates location
clustering time
probability risk factors risks groups

The cause and occurrence of disease in an individual.

Epidemiologic analysis of population-based data can identify “risk factors” and

estimate their effects, incorporating the uncertainty due to random variation.
M Gwinn 2023



Genomic

The determinants and distribution of health and disease in defined populations.

‘Epidemiology:
associations proportions
rates
clustering
risk factors risks
genetic variants familial risk

polygenic risk score

demographics
location
time

groups
genetic ancestry

M Gwinn 2023



Outline

> How genetics and epidemiology evolved in parallel
> Why group-level data are required to assess individual risk

> An early vision for genomic medicine
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Early vision for genomic medicine (through the retrospect-o-scope)

M Gwinn 2023



Medical and Societal Consequences of the Human Genome Project
Francis S. Collins, MD, PhD. N Engl J Med 341:28-37

Disease with
genetic component

|
| —
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M Gwinn 2023
Medical and Societal Consequences of the Human Genome Project | NEJM



https://www.nejm.org/doi/full/10.1056/NEJM199907013410106

“Single-gene disorder”: Cystic fibrosis

Chromosome 7

p22.3
p22.1
p21.3

- * Cystic fibrosis is the most common single-gene disorder in
= populations of European descent
e  The most common (70-90%) causative mutation was
discovered in 1989: CFTR AF508 at 7g31.2
o * Drug therapy targeted to this mutation was approved by FDA
. in 2019 (30 years in translation!)

eeon Dare to Dream: The Long Road to Targeted Therapies for Cystic Fibrosis.

chromosome 7

Collins F, NIH Director’s Blog, Oct 31, 2019
M Gwinn 2023


https://directorsblog.nih.gov/2019/10/31/dare-to-dream-the-long-road-to-targeted-therapies-for-cystic-fibrosis/

Medical and Societal Consequences of the Human Genome Project

Francis S. Collins, MD, PhD. N Engl J Med 1999; 341:28-37

Disease with
genetic component

Map
Preventive medicine /
Public health ‘
Clone gene Accelerated
/ \ by
Diagnostics Understand basic g:gg;ne
’/ biologic defect Project
Preventive
medicine
i
Pharmacogenomics ¥ Y
Gene therapy Drug therapy

Medical and Societal Consequences of the Human Genome Project | NEJM

M Gwinn 2023


https://www.nejm.org/doi/full/10.1056/NEJM199907013410106

TABLE 1. ResurLTs OoF GENETIC TESTING
IN A HyroTHETICAL PATIENT IN 2010.

oo mTmTsmmmsmmsssmmmmes N T S :
I ! 1 ]
| i | | IRELATIVE"  LIFETME |
! CoNDITION 1 | Candidate genes i1 Risk  Risk (%) |
: L o |
| Reduced risk I ! g :
| Prostatc cancer || HPCI, HPC2, HPC3 |1 0.4 7
i Alzhcimer’s discasc | | APOE, FAD3, XAD || 0.3 10
I Elevared risk il ! | :
| Coronary artery discas¢ | APOB, CETP i1 2.5 70 |
! Colon cancer i | FCC4, APC 14 23 i
i Lung cancer : i NAT2 116 40 !
k ! I

Cohort studies  Cohort studies
M Gwinn 2023 Case-control studies
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How genetics and epidemiology evolved in parallel
Why group-level data are required to assess individual risk
An early vision for genomic medicine

How genetic association studies got so large



Why are association studies so large?

Per-allele relative risks are much smaller

Many more genes are involved

I N N i
E i E i Ihsumve LiFETmE i
i Conpmon | i GEenes InvoLvep*® | L Risk Risk (%) i

I 11 :
i Reduced risk i i i i :
| Prostate cancer : \ HPC1, HPC2, HPC3 04 7 i
i Alzheimer’s discase ! i APOE, FAD3, XAD 1 0.3 10 !
I Elevated risk : ! i :
! Coronary artery discasq | APOB, CETP i1 2.5 70 |
! Colon cancer 1§ FCC4, APC 14 23 i
i Lung cancer i i NAT2 i i 6 40 |

Medical and Societal Consequences of the Human Genome Project
Collins. N Engl J Med 1999; 341:28-37 M Gwinn 2023



https://www.nejm.org/doi/full/10.1056/NEJM199907013410106

Disease risk (%)

Rare vs. common genetic causes of complex diseases

Familial Type 2 diabetes
A )
Huntington disease { Breast cancer Colorectal cancer \ 100 { PPARG CAPN10 TCF7L2 |
100 -
80 1 g 80 T
60 | % B0
*
40 1 g 40 4
20 1 Q g
0 - | 0 -
Carrier Noncarrier Carrier Noncarrier Carrier Noncarrier Carrier Noncarrier Carrier Noncarrier Homo  Hetero Noncarriers
Zygotes zygotes
* Rare mutations * Common variants
e Autosomal dominant inheritance e Family history?
* Low population risk * High population risk
* \Very high relative risk * Low relative risk

After Janssens 2008



Type 2 diabetes: Common variants with small effect sizes

0.5

OR=1.0

0.4

*
*
03
0.2
0.1
0

[
N 3 PO O N O & S
A QRS M A S I & ST @ S ©
& F ST S & & T SERCHEE N
NS \% L N S @ § X
-0.1 S V@Q S R
o GoDARTS Rotterdam

Janssens, van Duijn. Genome Medicine, 2008. M Gwinn 2023



https://genomemedicine.biomedcentral.com/articles/10.1186/gm20

Forward to the present: Genetic association studies

Human Genome Epidemiology Literature Finder*
Publications in PubMed

16000

14000

12000

10000

3000 GWAS
6000

4000

2000 I I I

0 ™=
2000 2005 2010 2015 2020

" Genetic association | GWAS
*As of August 2023 M Gwinn 2023


https://phgkb.cdc.gov/PHGKB/startPagePubLit.action

“Population”-based genomic epidemiology
UK Biobank

In-depth genetic and health information from half a million volunteer UK participants
Established 2006

All of Us

In-depth genetic and health information from one million volunteer US participants
Established 2015 as the Precision Medicine Initiative Cohort Program

Many, many research consortia

Regional, national, international; population, disease, or exposure-based; hundreds to
millions of participants

23andme

Personal genomics and biotechnology company with genotype data for 5 million people
Established 2007

M Gwinn 2023



Number of associations discovered

Increasingly large genome-wide association studies
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15,000
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1e7

—&— Associations (left)
—#— Participants (right) The more participants,
the more associations found...

And the smaller they are.....

2007 4
2008 -
2009
2010
2011
2012
2013
2014
2015
2016

A scientometric review of genome-wide association studies |
Communications Biology (nature.com Mills, Rahal, 2019.

2017

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5
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Number of study participants analyzed

Number of participants,
in millions
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https://www.nature.com/articles/s42003-018-0261-x
https://www.nature.com/articles/s42003-018-0261-x

Polygenic risk score (PRS) based on validated SNP associations

Higher genetic score = higher disease risk

Age-related macular

degeneration Type 2 diabetes

Treat Don’t treat Treat

Don’t treat
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Epidemiology:

The determinants and distribution of health and disease in defined populations.

case-control studies  proportions demographics
cohort studies :
| location
associations odds ratios time
x0T N
risk factors risks \ groups

genetic variants polygenic risk scores . How well do scores predict?

/

-
~ -—
e ———

How were study populations defined?

M Gwinn 2023
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How genetics and epidemiology evolved in parallel

Why group-level data are required to assess individual risk
An early vision for genomic medicine

How genetic association studies got so large

When polygenic risk scores are biased
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Inflation of PRS-Trait Association

Genetic and environmental correlations can bias
PRS associations

Parents typically create
environment reflecting
genetic liabilities

’ . 3 - - —~ ~
Genetics can be a marker -’ ~

- - Ve ~

of local environmental risk /,
factors /

/
HHHE II Differences in base &

target data can
deflate PRS prediction

—

]
Proximity of genetics / environmel\ct

A guide to performing Polygenic Risk Score analyses - PMC (nih.Eo‘v)‘ -
Choi SW, et al. Nat Protoc. 2020 Sep 1; 15(9): 2759-2772.

M Gwinn 2023


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612115/

Biased genetic discoveries influence disease risk inferences

C
Global T2D (EUR) score D Global T2D (Multi-ethnic) score

1.001

0.4+

Super 0.75+
population

£ AFR =

S AMR <

o EAS o

EUR 0.50-

0.24 | |SAS

0.25-

0.04 0.00-

2

-2 0 2 2 0
Polygenic Score Polygenic Score

Inferred and standardized polygenic risk scores for type 2 diabetes by population,
based on summary statistics from European and multi-ethnic studies.

Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations
Martin AR, et al. 2017;100:635-649.



https://www.sciencedirect.com/science/article/pii/S0002929717301076
https://www.sciencedirect.com/science/article/pii/S0002929717301076

Genetic and environmental correlations can bias
PRS associations

Parents typically create - ~ o
environment reflecting ~ - >
genetic liabilities ,7 N
® o / ) \
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A guide to performing Polygenic Risk Score analyses - PMC (nih.gov)
Choi SW, et al. Nat Protoc. 2020 Sep 1; 15(9): 2759-2772.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612115/
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Disease prevention: eliminate or modify/risk factors

STATINS

EVERYTHING

LULN

www.Statins.co.uk

Eliminate trans fats Eat better Take statins
Environment Behavior Preventive medicine

M Gwinn 2023



Why study genomics of common diseases with
environmental causes?

e Stratify disease risks > Prediction

* Understand patterns of disease occurrence — Diagnosis and prognosis

Do we need genomic research for the prevention of common diseases with environmental causes? - PubMed (nih.gov)
Khoury, et al. 2005;161:799-805

M Gwinn 2023


https://pubmed.ncbi.nlm.nih.gov/15840611/

Epidemiology: observational studies

Observational study designs

e Cohort associations
e (Case-control “correlations”
causes?

M Gwinn 2023



Wait a minute! “Correlation does not imply causation”

Total revenue generated by arcades =
correlates with
N . hd
Computer science doctorates awarded in the US
Correlation: 98.51% (r=0.985065)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

$2 billion 2000 degrees
a
e 111 g
$1.75 billion ]
2 1500 degrees
B _ .
o $1.5 billion E
1 a
5
< 1000 degrees g.
$1.25 billion 5
&

$1 billion 500 degrees

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

=@ Computer science doctorates == Arcade revenue

Spurious correlations. Tylervigen.com

M Gwinn 2023


https://www.tylervigen.com/spurious-correlations

Epidemiology: observational studies

Define “imply”
* Inlogic, “a implies b” means “if a, then b”
* In common discourse, “implies” means “suggests”

Correlation is necessary to infer causation—but not sufficient to prove it.

.- Age «_

7, N
s N

P N confounding
,/ \\‘

Living in FIorida—L» Dementia

ACSH Explains 'Confounding': Why Correlation Does Not Mean Causation | American Council on Science and Health
M Gwinn 2023



https://www.acsh.org/news/2017/10/18/acsh-explains-confounding-why-correlation-does-not-mean-causation-11981

Epidemiology: control of confounding

Observational study designs / statistical methods

e Cohort
e (Case-control

Experimental study design

e Randomized clinical trial

Control for confounding .

Randomised controlled trial

/

Randomisation method
I

Y Y

Exposed: intervention = Control: no intervention

Confounders equal
between groups

Outcomes compared between groups

M Gwinn 2023



Epidemiology: the problem of confounding

Coronary heart disease (CHD) is less frequent in women
taking menopausal hormone replacement therapy (HRT)

e Observational studies (case-control, cohort)

Taking HRT has no effect on risk of CHD
* Randomized clinical trial

Women taking HRT are more likely to develop breast cancer
e Observational studies (case-control, cohort)

M Gwinn 2023



Mendelian randomization

* Strategy: counter unmeasured confounding in observational studies.

* Principle: random allocation of alleles from parents to offspring.

Randomised controlled trial Mendelian randomisation
Randomisation method Random segregation of alleles Random
[ l inheritance
+ + + + of risk alleles
Exposed: intervention =~ Control: no intervention Exposed: one allelle Control: other allelle
Confounders equal Confounders equal
between groups between groups
Outcomes compared between groups Outcomes compared between groups

Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians | The BMJ
Davies et al. 2018 M Gwinn 2023



https://www.bmj.com/content/362/bmj.k601

The “J-shaped curve” for alcohol consumption and mortality

1.4
~~~~~~~ United States (n=9)
— Europe (n=14)
1.31 —-=—Other Countries (n=9) | 7
> 1.21
£
5
= 11
=
o
[t
s 1.04
-
K%
< 09-
=
=
£ 0.8-
0.7
0.6 T T T T T T L) 1 T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
g/d
0 1 2 3 4 5 6 7
Drinks per Day

Alcohol Consumption by Men

Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies - PubMed (nih.gov )
DiCastelnuovo, et al. Ann Int Med, 2006.

M Gwinn 2023


https://pubmed.ncbi.nlm.nih.gov/17159008/

Mendelian randomization

Environmental exposure: Mendelian randomisation
Alcohol consumption +
j Random segregation of alleles
e

I = =S S i S A 2RSSR L S AL ST L N
' Genetic proxy for exposure Exposed: one allelle Control: other allelle

ALDH?2 (alcohol dehydrogenase 2) Confounders equal

x1%1 x1%9 X% between groups

-2 - AN Outcomes compared between groups
~ — —)

low alcohol consumption

Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians | The BMJ
Davies et al. 2018 M Gwinn 2023



https://www.bmj.com/content/362/bmj.k601

Mendelian randomization: example
Mean alcohol consumption by ALDH2 genotype

60

50

40

30

2

| 1 b

0 r— — [ |
1 2 3 4 5

m*1*1 m*1*2 m*2%*2
ALDH2 genotype

Grams ETOH per day

o

Five studies that reported alcohol consumption as a continuous variable, males only

Chen L, Davey Smith G, Harbord RM, Lewis SJ (2008) Alcohol Intake and Blood Pressure: A Systematic Review Implementing a Mendelian
Randomization Approach. PLOS Medicine 5(3): e52. https://doi.org/10.1371/journal.pmed.0050052
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050052 M Gwinn 2023



https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050052

Mean alcohol consumption

Systolic

Female Male
Is moderate alcohol 135
consumption good for your - wls
I 3
blood pressure? : |w
o 1251
£ .
g 2] Y Systolic
115”l : : : . : v e - v
0 10 20 30 40 0 10 20 30 40
N O alcohol consumption (g/day)
Diastolic
Female Male
o -
5 85 1 .
E g o ) .
A € o {yg f}'/‘. Diastolic
| ¥
%
® 70 1 r . . . r . . r . .
0 10 20 30 40 0 10 20 30 40

alcohol consumption (g/day)

—— Amamoto et al., 2002 (18]
=== Takagi et al., 2001 [19]
= * - Tsuritani et al., 1995 [20]

Chen L, Davey Smith G, Harbord RM, Lewis SJ (2008) Alcohol Intake and Blood Pressure: A Systematic Review Implementing a Mendelian
Randomization Approach. PLOS Medicine https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050052

Mean blood pressure

M Gwinn 2023


https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050052
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What doctors wish patients knew
about precision medicine

JUL 21,2023 + 11 MIN READ

By Sara Berg, MS, Senior News Writer ’

“While we used to call it personalized medicine, we’re actually starting to move away from that
terminology because it gives the implication that the therapy is really uniquely tailored for that
person, which is probably a bit of an overstatement,” he said. Instead, “we are identifying
genetic differences to help us tailor the therapy to the entire group with the same genetic
differences, and we would treat them differently as we would another group with a different
set of genetics.”

*Jordan Laser, MD, chair of the Personalized Medicine Committee for the College of American Pathologists
What doctors wish patients knew about precision medicine | American Medical Association (ama-assn.org)

M Gwinn 2023


https://www.ama-assn.org/delivering-care/precision-medicine/what-doctors-wish-patients-knew-about-precision-medicine

What | hope everyone will remember about
precision medicine

* The goal of medicine is to protect, preserve, and prolong health
* The determinants of health and disease are complex and dynamic

* No matter how many or precise our measurements, deterministic models are

unrealistic

* Critical thinking—including formal systems of probability and statistics—remains

crucial in the age of “big data”

M Gwinn 2023
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Learning objectives

Name two technologies that have made large-scale, population-
based genomic epidemiology studies possible.

High-throughput genotyping, high-performance computing

Offer two reasons why population-based data are needed to assess

individual risk of common diseases.
The causes of common diseases are too dynamic and complex, causal processes are subject to random variation.

|dentify the main reason why genome-wide association studies are
conducted using very large study populations.

They are searching for very small effects.

Describe the problem in epidemiologic studies that Mendelian
randomization is designed to address.

By using a genetic proxy for an environmental exposure, MR studies are designed to reduce the risk of
confounding, that is, spurious association due to other factors related to both exposure and outcome.
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