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Introduction
Designing for Strength includes designing 

and determining the maximum load a 
3D-printed object can uphold without failure. 
Understanding the science of resilient 3D 
objects is necessary for its safe incorporation 
into load-bearing structure design. There is 
currently little information on this topic and a 
strong understanding of the special 
considerations that need to be given to 
3D-printed parts will become crucial as 3D 
printers are utilized in more industries. Our 
research on 3D-printed parts’ inherent 
weaknesses will aid engineers to create 
stronger prints. 

Materials and Methods
Materials: Computer, 3D Printer, PLA (Polylactic Acid) Filament, 
Testing Set-Up (Dake 10 ton hydraulic press, CALT DY220 load cell 
indicator, CALT DYLY-101-5000 kg. load cell).

)
Methods:

Background
3D printers are devices that allow engineers 

to create and alter 3D objects through online 
computer-aided design (CAD) programs. Prints 
are able to be modified in a slicer program 
and then printed  from the 3D printer via the 
extruder. There are a variety of 
filament material, such as plastics, metals, 
and composites - thus  illustrating the endless 
opportunities of 3D printing.

Results

Conclusions
During the testing and development phases, 
multiple discoveries were made regarding 
the efficiency of bridge design, such as:
● Geometry was the largest factor that 

determined the strength of the bridges.
○ Triangles and arches increased the 

strength of the bridges.
○ Straight lines or 90° angles 

weakened the bridges.
● 3D print orientation was another factor 

in bridge strength.
● The 3D printed bridges had a multitude of 

options to choose from when they were 
being sliced in Prusa Slicer.
○ A higher infill percentage leads to stronger bridges.
○ A larger amount of exterior perimeters leads to stronger bridges.
○ Different infill patterns (gyroid, honeycomb, etc.) lead to stronger or 

weaker bridges.
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Figure 1: Prusa MK3 #D 
Printer with complete model 
of Nefertiti on the steel 
plate.
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Figure 3: Flow chart depicting the process and methods used to design, print, and test 3D printed objects. 
The chart follows what is known as ‘the Engineering Design Process.’

Figure 6: A bar graph depicting the efficiency of 
bridge designs 1 and 2 for each designer. 

Figure 7: A bar graph depicting the maximum 
load of bridge designs 1 and 2 for each 
designer.

● The overall load the bridges could handle increased from Design 1 to 
Design 2 for most of the students. 

● The majority of designs did not increase in their efficiency from Design 
1 to Design 2. The additional loads are attributed more to increased 
design mass than improved geometry. 

● There were two instances where the maximum load of Design 2 were 
less than those of Design 1.

● Out of the top five of the bridges that had the highest maximum load, 
majority of them were from Design 2.

Design 1 Design 2
Figure 9: A side-by-side comparison of bridge designs 1 and 2 as created by Kylie Caprini

Many designs were changed greatly from Design 1 to Design 2 including: 
● Better design mass distribution
● Improved load distribution

○ Achieved by increasing the bridge’s width and height
○ Achieved by curving sharp edges so the force path was longer and 

minimized stress points
● Increased prominence of shoulders (the area in contact with the test 

stand)
○ Achieved by increasing width and thickness in corner areas (stress 

points) to increase corner strength 
○ Mass reduction at the bottom of the bridge as a result

Figure 8: Side-by-side comparisons of four bridges before and after testing. The most common bridge 
failures were sudden corner failures; however, the percentage of these failures decreased between designs 
1 and 2, thus increasing the percentage of gradual failures.
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Figure 2: A picture of a 3D model 
being displayed in Prusa Slicer

Figure 10: A picture of the testing 
set-up/load-testing apparatus.

Figure 4: A bar graph depicting the maximum load of various 
objects, with CA, CB, and CC being cylinders and BA, BB, and 
BC being bridges.

● The difference between the 
bridges is what face they 
were printed on.
○ Bridges A was printed on 

its side and Bridge B on 
its back.

○ Bridge C was printed 
standing on its end.

● Bridges A and B performed 
marginally better than C.
○ Bridges A and B print 

orientation being at a 
right angle to the 
external force increases 
maximum load

○ Bridge C being printed 
from its end allows it to 
be easily punctured in 
the testing process Figure 5: A picture of BA, BB, and BC from 

Figure 4 in Prusa Slicer.


