NATIONAL SCIENCE FOUNDATION

MATHEMATICAL SCIENCES SUMMER RESEARCH SYMPOSIUM

Register now at https://orise.orau.gov/nsf-msgi/symposium

Thursday, August 25th All times are in Eastern Daylight Time

Moderators:

- Yulia Gel, Project Director, National Science Foundation
- Jeremy Tyson, Project Director, National Science Foundation
- Swatee Naik, Project Director, National Science Foundation
- Jennifer Burnette, Project Manager, Oak Ridge Institute for Science and Education

Welcome and Schedule of Events

Welcome from the Division Director

• Dr. David Manderscheid, Division Director, Division of Mathematical Sciences, National Science Foundation

Overview of the NSF Mathematical Sciences Graduate Internship and Schedule of Events

• Jennifer Burnette, Project Manager, Oak Ridge Institute of Science and Education

Research Presentations

These sessions will feature 15-minute research-focused traditional style presentations from mathematical sciences doctoral students. Research presentations will feature the following topics: 1) Data Science and Machine Learning, 2) Fluids, Climate, and Atmospheric Science, 3) Mathematical Biology, 4) Numerical Methods, 5) Physics, 6) Quantum Computing, and 7) Stochastics and Statistics.

Numerical Methods

The Askey-Rahman-Suslov Nonsymmetric Poisson Kernel for Askey-Wilson Polynomials and its Special Values

• Raymond Centner, National Institute of Standards and Technology

Acceleration of Kernel Methods with Nystrom Approximation

• Zezheng Song, Lawrence Berkeley National Laboratory

10:00AM

OAK RIDGE INSTITUTE

10:30AM

Mathematical Biology	11:00AM
Simulating African Swine Fever Movement with SIR Models	
Abigail D'Ovidio Long, United States Department of Agriculture: Animal and Plant Health Inspection Serv	ice
Topological data analysis on LiDAR scans of the forest	
Alvis Zhao, United States Department of Agriculture Forest Service	
Data Science and Machine Learning	11:30AM
Causal inference and discovery with dynamic intervention for policy-making	
Jimi Kim, Oak Ridge National Laboratory: Oak Ridge Leadership Computing Facility	
Geometric Scattering Priors and Differentiable Solvers for Inverse Problems	
Oluwadamilola Fasina, Lawrence Berkeley National Laboratory	
How Robust are the Communities in Temporal Networks? A Comparative Analysis Using Community Detection	Algorithms
Moyi Tian, Oak Ridge National Laboratory	
Generative Modeling and Parameter Identification of SDEs via Optimal Transport and Normalizing Flows	
 Jonah Botvinick-Greenhouse, Argonne National Laboratory, MCS Division 	
Scalable hyperparameter optimization for neural networks	
Madhu Gupta, Oak Ridge National Laboratory	
Variational Deep Learning for Image Segmentation	
Liangchen Liu, National Institute of Standards and Technology	
Stochastics and Statistics	1:00PM
Techniques of Design of Experiments and Space Filling Designs	
Manisha Garg, Argonno National Laboratory	
• Manisha Garg, Argonne National Laboratory	
Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm	ersed aquatic
Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass	ersed aquatic
 Manisha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center 	ersed aquatic
 Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference 	ersed aquatic
 Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory 	ersed aquatic
 Manisha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization 	ersed aquatic
 Manisha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory 	ersed aquatic
 Mainsha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to submin vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology 	ersed aquatic 2:00PM
 Mainsha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners 	ersed aquatic 2:00PM
 Mainsha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners Katherine Daftari, United States Army Corps of Engineers: Engineer Research and Development Center 	ersed aquatic
 Mainsha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to submivegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners Katherine Daftari, United States Army Corps of Engineers: Engineer Research and Development Center 	ersed aquatic 2:00PM
 Mainsha Garg, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners Katherine Daftari, United States Army Corps of Engineers: Engineer Research and Development Center Inference of dynamical states in behavioral recordings of socially interacting animals Wai Ho Chak, Lawrence Berkeley National Laboratory 	ersed aquatic 2:00PM
 Mainsha Galg, Algonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to subm vegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners Katherine Daftari, United States Army Corps of Engineers: Engineer Research and Development Center Inference of dynamical states in behavioral recordings of socially interacting animals Wai Ho Chak, Lawrence Berkeley National Laboratory 	ersed aquatic 2:00PM
 Mainsha Gaig, Argonne National Laboratory Predicting a continuous causal variable given ordinal outcomes and structural zeroes with application to submivegetation biomass Julie Sherman, United States Geological Survey: Upper Midwest Environmental Sciences Center Stein-Variational Gradient Descent in Higher Dimensional Bayesian Inference Muhammad Rao, Los Alamos National Laboratory Theoretical and Empirical Investigation of Gradient Estimators in Zeroth-order Optimization Manushi Welandawe, Argonne National Laboratory Mathematical Biology Decoding Animal Behaviors: Using Information Theory to Explore Behavioral Dynamics in Golden Shiners Katherine Daftari, United States Army Corps of Engineers: Engineer Research and Development Center Inference of dynamical states in behavioral recordings of socially interacting animals Wai Ho Chak, Lawrence Berkeley National Laboratory 	ersed aquatic 2:00PM 2:30PM

• Madison Phelps, Fermi National Accelerator Laboratory

Break	2:45PM
Data Science and Machine Learning	3:00PM
Transfer learning techniques for building damage assessment	
Yandi Wu, United States Army Corps of Engineers: Engineer Research and Development Center: Geospatia	l Research
Laboratory	
Fluids, Climate, and Atmospheric Science	3:15PM
Pressure-dependant rheological stress model of continuum granular flows	
Eunji Yoo, Lawrence Berkeley National Laboratory	
Gaussian Process Emulators for Volcanic Ash Dispersion Model Tephra2	
Nian Liu, Los Alamos National Laboratory	
Break	3:45 PM
Fluids, Climate, and Atmospheric Science Cont'd	4:00PM
Mathematical approaches for effective meso-micro coupling	
Jithin George, National Renewable Energy Laboratory	
High Amplitude Acoustic Propagation in Porous Media	
Ryan McConnell, United States Army Corps of Engineers: Engineer Research and Development Center: Col	d Regions
Research and Engineering Laboratory	
Discovering reduced-order equations of motion for firebrand transport	
 Alexander Mendez, United States Department of Agriculture Forest Service 	
Physics	4:45PM
Machine Learning of Peridynamic Models	
Biraj Dahal, Oak Ridge National Laboratory	
Preconditioning for hyper-reduction in reduced order models	
Minji Kim, Lawrence Livermore National Laboratory	
A Discrete Curvature Approach to the Drill String Bending Problem	
Arthur Mills, National Energy Technology Laboratory	
Intragranular bubble detection in crystalline solids through image processing and graph convolutional neural ne	tworks
Irving Martinez, Sandia National Laboratory	
Closing Remarks	
	5:45PIVI

Friday, August 26th All times are in Eastern Daylight Time

Moderators:

- Yulia Gel, Project Director, National Science Foundation
- Jeremy Tyson, Project Director, National Science Foundation
- Swatee Naik, Project Director, National Science Foundation
- Jennifer Burnette, Project Manager, Oak Ridge Institute for Science and Education

Welcome Back

Research Presentations

These sessions will feature 15-minute research-focused traditional style presentations from mathematical sciences doctoral students. Research presentations will feature the following topics: 1) Data Science and Machine Learning, 2) Fluids, Climate, and Atmospheric Science, 3) Mathematical Biology, 4) Numerical Methods, 5) Physics, 6) Quantum Computing, and 7) Stochastics and Statistics.

Stochastics and Statistics

Statistical metrics for evaluating the compressibility of scientific datasets through lossy compressors

• Arkaprabha Ganguli, Argonne National Laboratory

Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification

• Yiming Fan, Sandia National Laboratory

Statistical Emulators for Stochastic Computer Simulators

• Hwanwoo Kim, Argonne National Laboratory

Fluids, Climate and Atmospheric Science

Predict Soil Moisture Content Using Physics-Informed Neural Networks

• Jiajing Guan, United States Army Corps of Engineers: Cold Regions Research and Engineering Laboratory

Quantum Computing

A statistically-inspired method for enhancing error mitigation in quantum computing

• Wern Yeen Yeong, Fermi National Accelerator Laboratory

Fluids, Climate, and Atmospheric Science

A Higher Order, Stable Partitioned Scheme for Fluid-Structure Interaction Problems

• Kyle Schwiebert, Los Alamos National Laboratory

Exploring numerical errors in simulations of the wave equation with large grid spacings

Madhumita Roy, Oak Ridge National Laboratory

Changing Space-Time Covariance of Drought Index Under Changing Climates using Gaussian Processes

• Tiffany Christian, Argonne National Laboratory

10:00AM

11:05AM

10:50AM

11:20AM

Physics

Building Hierarchical Graphs to Describe Neutrino Interactions

Alaittin Kirtisoglu, Fermi National Accelerator Laboratory

Reconstruction of 4d Diffraction Patterns in Scanning Transmission Electron Microscopy via Compressed Sensing and Neural Network

• Zhaiming Shen, Oak Ridge National Laboratory

Efficient Gaussian process-based surrogate model for chance-constrained optimal power flow on the large scaled power grid

• Hanmo Li, Lawrence Livermore National Laboratory

Break	12:50PM
Panel Discussion: Preparing Students for Careers in Mathematical Sciences	1:00PM
This session will feature distinguished panelists from national laboratories and highlight the role of mathematics a graduate education in preparing students for careers in science and industry, and the distinctive contribution of in programs such as MSGI.	nd statistics ternship
Moderator	
• Dr. Jeremy Tyson, Program Director, Division of Mathematical Sciences, National Science Foundation Panelists	
Dr. Aditi Krishnapriyan, Applied Mathematician, Lawrence Berkeley National Laboratory	
Dr. E. Louise Loudermilk, Research Ecologist, U.S. Department of Agriculture, Forest Service, Southern Rese Station	earch
Dr. Gabriel Perdue, Scientist, Fermi National Accelerator Laboratory (Fermilab)	
• Dr. Kevin R. Pilkiewicz, Research Chemist, U.S. Army Corps of Engineers, Engineer Research and Developm	ent Center
Dr. Stefan M. Wild, Deputy Division Director/Senior Computational Mathematician, Argonne National Labo	oratory
Quantum Computing	2:00PM
Simulating Quantum Circuits Using the Yang-Baxter Equation	
Andrey Khesin, Fermi National Accelerator Laboratory	
Topological Quantum Error Detection/Correction	
Tushar Pandey, Oak Ridge National Laboratory	

12:05PM

Data Science and Machine Learning	2:30PM
To Correctly Classify Imbalanced Data, Find the Best Model Data	
K Medlin, Argonne National Laboratory	
An Explainable Convolutional Neural Network Model for Predicting the Southern Annular Mode	
Austin Eide, Los Alamos National Laboratory	
The Constituents of Hierarchical Temporal Memory	
DJ Passey, Lawrence Berkeley National Laboratory	
Learning on top of the reference dynamical system	
Tianhao Zhang, Lawrence Berkeley National Laboratory	

3:25PM

For more information about this event, please visit our website: <u>https://orise.orau.gov/nsf-msgi/symposium.html</u>

Closing Remarks

