INDICATIONS AND USAGE

Ca-DTPA is associated with depletion of measurable amounts of zinc, magnesium, manganese, copper, and iron. It is recommended that zinc and trace metal levels be determined prior to treatment and at selected intervals following treatment. Zinc may be rapidly depleted by Ca-DTPA (5.2).

ADVERSE REACTIONS

REPRODUCTIVE SYSTEM

Ca-DTPA is associated with depletion of measurable amounts of zinc, magnesium, manganese, copper, and iron. It is recommended that zinc and trace metal levels be determined prior to treatment and at selected intervals following treatment. Zinc may be rapidly depleted by Ca-DTPA (5.2).

DRUG INTERACTIONS

The chelating effects of Ca-DTPA are greatest when radiocontaminants are still away, give chelation treatment as soon as it becomes available. Chelation treatment is still effective even after time has elapsed following internal contamination. (4.1)

CONTRAINDICATIONS

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

DRUG INTERACTIONS

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

CLINICAL PHARMACOLOGY

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

HOW SUPPLIED

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

17 PATIENT COUNSELING INFORMATION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

16.1 How Supplied

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

HIGHLIGHTS OF PRESCRIBING INFORMATION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

FULL PRESCRIBING INFORMATION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

12.1 MECHANISM OF ACTION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

12.3 PHARMACOKINETICS

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.2 Depletion of Body Trace Mineral Stores

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.1 Asthma Exacerbation

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.4 Risks for Patients with Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.3 Risks for Patients with Severe Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.2 Depletion of Body Trace Mineral Stores

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.6 Treatment of Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.5 Management of Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.4 Management of Severe Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.3 Management of Moderate Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.2 Management of Mild Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.1 Management of Asymptomatic Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

12.1 MECHANISM OF ACTION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

12.3 PHARMACOKINETICS

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.1 Asthma Exacerbation

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.4 Risks for Patients with Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.3 Risks for Patients with Severe Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

5.2 Depletion of Body Trace Mineral Stores

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.6 Treatment of Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.5 Management of Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.4 Management of Severe Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.3 Management of Moderate Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.2 Management of Mild Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

15.1 Management of Asymptomatic Hemochromatosis

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)

12.1 MECHANISM OF ACTION

- Pregnancy: Based on animal data, Ca-DTPA may cause fetal harm. Chelation may reduce radioactive contaminant levels in pregnancy. (4.1)
Inhaled or oral administration, absorption was approximately 5%. In a U.S. Registry of 18 individuals who received 750 kBq of radiolabeled DTPA, plasma retention up to 7 hours post dosing was expected to decrease the amount of radioactive contamination, interstitial fluid, and tissues. When Ca-DTPA is administered by inhalation of Ca-DTPA 2 micromol/kg (0.11 MHD) 30 minutes after contamination, it may be appropriate to use a single dose of Ca-DTPA intravenously as a single dose of 10 to 1,000 micromol/kg (0.54-54 x maximum human dose, MHD). When treated within one hour of internal contamination, Ca-DTPA is cleared from the plasma in the first few hours after dosing through urinary excretion. Ca-DTPA is cleared from the plasma in the first few hours after dosing through urinary excretion.

In another study, rodents contaminated with aerosolized plutonium and americium-241 were treated with Ca-DTPA to determine the rate of plutonium elimination. Approximately 10-fold higher rate of elimination of plutonium in the urine was observed. This is consistent with the removal of Ca-DTPA from the plasma in the first few hours after dosing. The use of Ca-DTPA as a chelator in humans who have ingested plutonium has been documented. The rate of plutonium elimination following Ca-DTPA treatment of contaminated individuals has been shown to be a useful indicator of the therapeutic efficacy of the chelator treatment. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body.

In previous clinical studies, three deaths were reported in patients with severe iron overload, one of whom was treated with Ca-DTPA. The drug was used for a total of 20 infusions and was well tolerated, with no evidence of adverse reactions. The drug was used for a total of 20 infusions and was well tolerated, with no evidence of adverse reactions. The drug was used for a total of 20 infusions and was well tolerated, with no evidence of adverse reactions.

In previous clinical studies, three deaths were reported in patients with severe iron overload, one of whom was treated with Ca-DTPA. The drug was used for a total of 20 infusions and was well tolerated, with no evidence of adverse reactions. The use of Ca-DTPA for the treatment of iron overload has been shown to be an effective treatment, with no evidence of adverse reactions. The use of Ca-DTPA for the treatment of iron overload has been shown to be an effective treatment, with no evidence of adverse reactions. The use of Ca-DTPA for the treatment of iron overload has been shown to be an effective treatment, with no evidence of adverse reactions.

Chelation treatment of pregnant women should begin and continue with an intravenous bolus of Ca-DTPA at the recommended daily human dose of 1 gram based on body surface area (BSA) for 7 days. The recommended daily human dose of Ca-DTPA for pregnant women is 1 gram based on BSA. The use of Ca-DTPA for the treatment of iron overload in pregnant women has been shown to be an effective treatment, with no evidence of adverse reactions. The use of Ca-DTPA for the treatment of iron overload in pregnant women has been shown to be an effective treatment, with no evidence of adverse reactions. The use of Ca-DTPA for the treatment of iron overload in pregnant women has been shown to be an effective treatment, with no evidence of adverse reactions.

In a study of rodents internally contaminated with plutonium, the rate of plutonium elimination in the urine was increased with Ca-DTPA treatment. This is consistent with the removal of Ca-DTPA from the plasma in the first few hours after dosing. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body.

In a study of rodents internally contaminated with plutonium, the rate of plutonium elimination in the urine was increased with Ca-DTPA treatment. This is consistent with the removal of Ca-DTPA from the plasma in the first few hours after dosing. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body.

In a study of rodents internally contaminated with plutonium, the rate of plutonium elimination in the urine was increased with Ca-DTPA treatment. This is consistent with the removal of Ca-DTPA from the plasma in the first few hours after dosing. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body. The use of Ca-DTPA for the treatment of internal contamination has been shown to be effective in the removal of radionuclides from the body.