The universal skill for a research-based career

by Donald L. Johnson

Here’s the thing about research careers that require geographic information systems (GIS) skills–they are everywhere. Increasingly, researchers and practitioners are gathering and working with data sets based on location. Sometimes also referred to as geospatial information systems, GIS technology enables researchers to collect data based on that location and then manipulate and analyze the information on a three-dimensional scale. As more sophisticated technologies and reliable data about location become available, scientists are mining them for discovery. Consequently, the ability to work with GIS technology and data science analytics becomes essential to a broad array of research careers.

Jeff Kelly, Ph.D, program director of the National Science Foundation’s Trainee Program in Aeroecology at the University of Oklahoma, recognizes the impact of GIS on research. “The rapid growth of geographical big data has had significant impact on the design of ecological research and the skills required carrying out experiments and analysis. Today, most studies in this area require expertise in GIS. Gathering, managing and utilizing these large, complex data sets requires extensive academic and technical preparation.”

Geographic Information Systems Career Outlook

In general, geospatial sciences can be thought of as either comprised of or aligned with five core areas:

  1. Geodesy and geophysics
  2. Photogrammetry
  3. Remote sensing
  4. Cartographic science
  5. Geographic information systems and geospatial analysis

One occupation that combines three of areas above—photogrammetry, cartographic science, and GIS—is classified as cartographers and photogrammetrists by the Bureau of Labor Statistics (BLS). According to the BLS’ 2016-2017 Occupational Outlook Handbook, a cartographer who uses GIS technology to create maps is also known as a geographic information specialist. Geographic information specialists use GIS technology to assemble, integrate, analyze and present spatial information in a digital format.

The occupation of cartographers and photogrammetrists is a relatively small occupation, with only 12,300 workers in 2014. Other occupations noted by BLS to have a GIS component in an occupation title include GIS mapping technicians (which are a subset of the broader BLS occupation called surveying and mapping technicians) and GIS geographers (which are a subset of the larger occupation geographers). In addition to these occupations, BLS lists civil engineers, environmental scientists and specialists, forest and conservation workers, landscape architects, surveyors, and urban and regional planners as occupations similar to cartographers and photogrammetrists. These occupations tend to have more jobs, many of which may consist of more functions beyond the use of GIS.

The career outlook for workers in GIS-related occupations appears bright. In Table 1, the most recent BLS employment projections for several occupations for comparison purposes are shown. Note that the fastest growing occupational growth rate is projected for cartographers and photogrammaterists. In fact, among all STEM occupations requiring a bachelor’s degree for entry, cartographers and photogrammaterists is projected to be the third fastest growing from 2014-2024. While the number of engineers is projected to increase at a lower rate than all occupations, civil engineers is projected to increase at a faster rate than all engineers on average. Even in the case of geographers, which show a decrease in employment projected over the 2014-2024 period, the BLS notes that job prospects are the brightest for those with experience working with geographic technologies such as GIS.

Table 1. Percent Change in Employment, projected 2014-2024
All Occupations 7%
Computer 13%
Engineers 4%
Civil Engineers 8%
Social Scientists 12%
Geographers -2%
Architects, surveyors, and cartographers 6%
Cartographers and Photogammaterists 29%

Geoscience is an example of a physical science occupation directly benefiting from the rise of GIS technology. This group includes engineering geologists, geologists, geochemists, geophysicists, oceanographers, petroleum geologists and several others. According to BLS, geoscientists use a wide variety of tools that range from the simple to the complex. Among those tools are remote sensing equipment to collect data and GIS and modeling software to analyze the data collected. As noted in BLS’ 2016-2017 Occupational Outlook Handbook, “Computer knowledge is essential for geoscientists. Students who have experience with computer modeling, data analysis, and digital mapping will be the most prepared to enter the job market.” The number of geoscientists employed from 2014 to 2024 is projected to grow by 10 percent, faster than the average for all occupations.

About the author
Donald L. Johnson has a Ph.D. in economics from the University of Tennessee and serves as senior researcher and principle investigator for ORISE workforce studies. With more than 20 years of experience in surveying both industry and academia, he has conducted dozens of analyses related to science and engineering labor market trends, and on issues such as workforce skills, adequacy of labor supply, education requirements and employment demand.

Current Research Opportunities in Geographic Information Systems

Opportunity Title Opportunity Number Organization Program Location