ORISE offers scholarship opportunities to students pursuing careers in STEM

Autonomous Driving: Education in Communication

Autonomous and connected vehicles have the potential to improve the safety and efficiency of the transportation system. The Oak Ridge Institute for Science and Education (ORISE) is hosting a problem-based challenge for undergraduate students. The challenge for undergraduates is to develop a chart or infographic to communicate the levels of autonomous driving and sensor packages required to the public. Your infographic could win you a $5,000 scholarship! The deadline for this competition is Friday, December 6, 2019, and winners will be announced late-December.

Prizes:

1st place:  $ 5,000 scholarship

2nd place:  $ 3,000 scholarship

3rd place: $ 1,000 scholarship

The Problem:

Autonomous and connected vehicles have the potential to improve the safety and efficiency of the transportation system. Vehicles that are able to automatically drive themselves in any condition or situation require a number of advanced sensors such as LIDAR, RADAR, and cameras, in addition to a fast communication network to communicate to each other and the traffic signal infrastructure in near real-time. The public is not yet generally familiar with the different levels of autonomy or the sensor packages and fidelity of the sensors needed for the different levels. In an effort to better inform the public about SAE levels of autonomous driving, what is the best way to put that information in a single chart?

Your task: Develop a draft chart or infographic to communicate to the public the levels of autonomous driving and the sensor packages. You must provide supporting evidence using footnotes for citations on the chart/infographic and have a supporting document with additional information.

Details:

  • You must be an undergraduate student currently enrolled at a college or university who will also be enrolled at a college or university next year.
  • A submission shall include 1) a chart or infographic to communicate the levels of autonomous driving AND the sensor packages 2) supporting document with additional information.
  • You can read about the GROVER autonomous bus project at the Oak Ridge National Laboratory here.
  • An article on the levels of autonomous driving is available to download here. You will be asked to create a free account before downloading.
  • Use of additional sources is encouraged.
  • Entries must be submitted on the following form: https://orausurvey.orau.org/n/OctoberUndergraduate.aspx.
  • Entries should convey accurate information appropriately to the general public.
  • Entries will be graded according to the rubric provided.

How to Enter:

Questions? 

Please email your questions to stemed@orau.org.

 

  • Instruments: A Problem in the Solution

    Technology plays a key role in many fields, but it is not without limitations. Although technology has helped to make great advancements in data collection, there are times that the instruments themselves interfere in the measurements. The Oak Ridge Institute for Science and Education (ORISE) is hosting a problem-based challenge for undergraduate students. The challenge for undergraduates is to identify a situation in which an instrument interferes with its own measurements and data collection, and to propose a solution to the problem. 

    Winners:

    1st place: Le Nguyen, Michigan State University, Neural Networks as a Solution to Spontaneous Emission in the IceCube Neutrino Detector

    2nd place: Sayem Sinha, Syracuse University, Surveying in Science: “Fixing” the 2016 Election Polls

    3rd place: Marina Beshai, Princeton University, The US Census: The Effective Silence of Underrepresented Groups

    The Challenge:

    Ed Dumas, an affiliate of the National Oceanic and Atmospheric Administration (NOAA), explained a problem in using drones as an instrument to measure weather data: Atmospheric Turbulence and Diffusion Division (ATDD) has been making wind measurements for years using gust probes attached to fixed-wing full-scale aircraft, and this technology is well-characterized. Probes have been tested in a wind tunnel and the uncertainty in both the wind measurements made from the gust probe and the velocity and angles (pitch, roll, and heading) of the platform itself that are combined to make the final wind measurement have been accurately characterized.  Because NOAA has been able to characterize the uncertainty in each of the components that comprise the wind measurement, there is confidence in the ability of the overall system to accurately measure winds with respect to the Earth.

    However, similar measurements are not as well characterized from a multi-rotor platform.  The biggest challenge is the disruption of the local airflow that is made by the multiple propellers used to keep the vehicle aloft.  Eddies from these propellers can destroy the existing eddies in the atmosphere and severely contaminate the wind measurement. 

    Drones measuring wind gusts are not the only example of an instrument interfering with its own measurements. Another example is attempting to measure absolute zero on the Kelvin scale using a thermometer. At absolute zero (-273.15 degrees Celsius), atoms stop moving. Absolute zero cannot currently be measured because the particles of the thermometer are moving, which raises the temperature of the substance being measured by keeping the atoms in motion. While this temperature difference is an insignificant amount at temperatures that we experience daily, it is a major problem when measuring absolute zero. So while the thermometer readings can approach absolute zero, the current thermometer technology is not capable of accurately measuring it.


    Nuclear Power: A Safe Future

    There has been a significant increase in usage of nuclear power plants in the past 60 years, which comes along with an increased need for attention on nuclear safety. The Oak Ridge Institute for Science and Education (ORISE) hosted a problem-based challenge for undergraduate students. The challenge for undergraduates was to develop a plan to improve nuclear safety for the future. Congratulations to our scholarship winners!

    1st place: Lukas Poteracke, San Diego State University, Nuclear Reactors: The Frontier of Energy Innovation

    2nd place: Aryobimo Wibowoputro, San Diego State University, Threats of Nuclear Power and Plans for the Future

    3rd place: Cole Maguire, University of Texas at Austin, The Future of Nuclear Power

    Congratulations to our scholarship winners!


    Radiation Exposure: What Not to Fear

    Despite living in a world of constant radiation exposure, people have a negative association with the word “radiation.” In March, the Oak Ridge Institute for Science and Education (ORISE) hosted a problem-based challenge for undergraduate students. The challenge for undergraduates was to develop a strategic communication approach for the general public on the everyday occurrences of radiation, the benefits, risks, and safety of all types and uses of radiation.

    Congratulations to our scholarship winners!

    1st place: Julia Trainor, Syracuse University, #RadiationReimagined: Strategic Communications Report

    2nd place: Cole Maguire, University of Texas at Austin, Radiation and Its Communication to the Public

    3rd place: Ian Wietecha-Reiman, Penn State University, Radiation Exposure PSA Proposal: Using the Internet to Placate Fears